Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.

نویسندگان

  • Hao Fang
  • Ming Wen
  • Hanxing Chen
  • Qingsheng Wu
  • Weiying Li
چکیده

Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Amido-Amino Clay Stabilized Copper ‎Nanoparticles: Antimicrobial Activity and ‎Catalytic Efficacy for Aromatic Amination

   Amido-amino functionalized halloysite stabilized copper nanoparticles (aah-CuNPs) were synthesized through one-pot protocol by a wet chemical method using hydrazine as reducing agent. The nanocomposite formed was stable in dry ethanol. The composition and binding nature of the nanocomposite were studied using FT-IR, DRS-UV, EDAX and powder XRD techniques. The morphological features of th...

متن کامل

Zwitterionic Surfactant Stabilized Palladium Nanoparticles as Catalysts in Aromatic Nitro Compound Reductions

Palladium nanoparticles (NPs) stabilized by ImS3-14, a zwitterionic surfactant structurally related to ionic liquids, are revealed here to be good catalysts for the reduction of a large number of substituted aromatic nitro compounds. Our mass spectrometry results are consistent with the formation of amino products in a direct route, where the aromatic nitro compounds are initially reduced to ni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016